The webinar will start soon. Meanwhile, thanks for indicating in the text box your name, organisation and position.

Key products of the Platform
Useful tools, guidance and documentation for practitioners in
Disaster Risk Reduction (DRR) / Climate Change Adaptation (CCA)
WEBINAR 17 Dec 2019
Key products of the Platform
Useful tools, guidance and documentation for practitioners in
Disaster Risk Reduction (DRR)/
Climate Change Adaptation (CCA)
Structure of the webinar

❖ Introduction

❖ 6 Platform products

> Presentation (10min), followed by Q&A (5 min)
 • DRR/CCA mainstreaming guidance
 • Where people and their land are safer - Compendium of Good Practices in DRR
 • Advocacy packing list: Towards climate and disaster resilient development
 • Inclusive DRR Hands-on Tool
 • Indicator Tool Box
 • Evaluation of cost-benefit analysis tools for DRR

❖ Outlook Platform events 2020
Introduction
Some starting remarks

❖ Please mute your mic during the presentations
❖ Questions: 1) using the chat function. 2) orally after the presentations.
❖ The webinar presentation will later be on our website www.drrplatform.org
The Swiss NGO DRR Platform

- Network of 17 Swiss-based NGOs
- Dedicated to increase resilience of women and men, communities and governments through an integrated approach to Disaster Risk Reduction (DRR) and Climate Change Adaptation (CCA)
- 3 pillars: Capacity building, Technical advice and Advocacy
- Co-funded by SDC

Visit us online at www.drrplatform.org
The presenters

Jana Junghardt
Caritas Switzerland

Manuel Rothe
CBM Switzerland

Anton Jöhr
Swiss Red Cross

Georg Heim
Swiss Red Cross

Eveline Studer
Helvetas
6 Platform products

• DRR/CCA mainstreaming guidance
• Where people and their land are safer - Compendium of Good Practices in DRR
• Inclusive DRR Hands-on Tool
• Advocacy packing list: Towards climate and disaster resilient development
• Indicator Tool Box
• Evaluation of cost-benefit analysis tools for DRR

All Platform products are accessible here: https://www.drrplatform.org/publications.html
Products and process

- Documentation of best practices
- Guidance
- Tools
- Target audience
- Working groups
- Feedback by practitioners
- Events for promotion
DRR/CCA mainstreaming guidance
Objectives and content

Mainstreaming DRR/CCA in sectors/contexts &

Objectives:

1) Principles for DRR/CCA mainstreaming

2) Support the identification of appropriate tools

3) Advantages and challenges of the main tools

4) Further tools and web-resources
DRR/CCA along PCM

Project Identification
Quick risk screening / checklist

Evaluation
Assessments, CBA

Project Cycle Management

Project Planning
Risk analysis/HVCA/CBA
Identification of DRR/CCA measures

Project Implementation
Institutionalization, ownership, participation, do-no-harm etc.
Main tools related to PCM

2 pager summary

• Structure & content
• Advantages & limitations
• Download link
DRR/CCA in sectors and contexts

1. Agriculture sector
 - Food security & nutrition
 - Agriculture value chains

2. Environment / natural resources sector
 - Water
 - Land / soil
 - Ecosystem

3. WASH sector
 - WASH infrastructure
 - Hygiene (water-disease related)
 - Water resource management / water services

4. Health sector
 - Health infrastructure
 - Health in emergencies
 - Health services

5. Education sector
 - School infrastructure
 - Curriculum
 - Institutional preparedness

6. Infrastructure sector
 - Private infrastructure (shelter, housing etc.)
 - Public infrastructure (except hospitals/schools)
 - Further infrastructure (roads etc.)

7. Urban context
 - Medium-size towns
 - Mega cities/slums
 - Urban services & planning

8. Emergency & recovery context
 - Post-disaster
 - Post-crisis/conflict
 - Camp management, protection
Compendia of tools

<table>
<thead>
<tr>
<th>Name of compendium - institution</th>
<th>Filter options</th>
<th>Number of tools</th>
<th>Type of references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory of tools & methodologies to support ecosystem-based adaptation (IIED, IUCN, UNEP-WCMC)</td>
<td>Sectors/contexts, PCM stages</td>
<td>222</td>
<td>Tools</td>
</tr>
<tr>
<td>Knowledge learning website (weADAPT)</td>
<td>Sectors/contexts, PCM stages</td>
<td>Hundreds</td>
<td>All</td>
</tr>
<tr>
<td>Tools and Methods (UNFCCC)</td>
<td>Sectors/contexts, PCM stages</td>
<td>311</td>
<td>Tools/ frameworks</td>
</tr>
<tr>
<td>World Overview of Conservation Approaches and Technologies (WOCAT) (CDE)</td>
<td>Soft/hard measures, Environmental contexts</td>
<td>Approx. 1,800 practices</td>
<td>Instruction notes/ fact sheets</td>
</tr>
</tbody>
</table>
Excell annex with all tools

- **Readme**: instruction note
- **Structure**: Mind map overview of the entry points to select tools: PCM stages or sectors/contexts.
- **Sectors/Contexts**: An overview of tools which are specific for sectors or contexts, including applicable search filter.
- **PCM-ToolCompendia**: An overview of tools which are specific for PCM stages and tool compendia for in-depth analysis.
Questions?
Where people and their land are safer - A Compendium of Good Practices in DRR
Objective and partnership

Objectives:

1) Document links between sustainable land management and DRR/CCA

2) Contribute to knowledge base on nature-based solutions

3) Foster regional exchange of knowledge
Sustainable land management practices for disaster risk reduction

Haiti
- Local consultation for action on hillsides to protect water sources
- Protection of water resources
- Approach at household level for Terra Preta home gardens
- Terra Preta raised garden beds

Niger
- Training and awareness raising for improved agricultural techniques
- Improved pearl millet variety and cowpea varieties
- Multi-nutritional fodder blocks for livestock

Chad
- Community storage facilities
- Early warning system

Tajikistan
- Pasture User Union
- Water points for livestock in daily pastures

Pakistan
- Water User Master Plans
- Sub-surface water harvesting for more efficient use of water resources

India
- Eradicating malnutrition by promoting locally produced Hollicks
- Multigrain nutritional bulks

Cambodia
- Locally adapted rice varieties
- Community safety nets

Honduras
- Participatory slope stabilization
- Living barriers
- Drainage fascines
- V-shaped catchment
- Fence using taze
- Legal protection of microbasins through decrees
- Protection of microbasins through reforestation
- Protection of water infrastructure against disaster risk

Uganda
- Bench terracing
- Farming God’s Way
- Soil and water conservation channels

Bangladesh
- Disability-inclusive risk reduction
- Disability-inclusive flood-resilient cluster village
- Peer to peer pass-on approach with women
- Keyhole gardens
- Floating gardens
- Pond Sand Filter
- Early warning message dissemination
- Emergency infrastructure including shelter and linked transport infrastructure

Kenya
- FMNR implementation approach
- Farmer Managed Natural Regeneration
- Partnership with beneficiary communities in project implementation
- Rock catchments

Phippines
- Social Enterprise
- Artificial reef

Table:
<table>
<thead>
<tr>
<th>Hazards addressed</th>
<th>Risk management step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drought</td>
<td>Prevent and reduce</td>
</tr>
<tr>
<td>Flood</td>
<td>Reduce</td>
</tr>
<tr>
<td>Wildfire</td>
<td>Deal with risk</td>
</tr>
<tr>
<td>Tsunami</td>
<td></td>
</tr>
<tr>
<td>Landslide</td>
<td></td>
</tr>
<tr>
<td>Dry spell</td>
<td></td>
</tr>
</tbody>
</table>
Logic

Step 4.

Avoid new risk
Prevent impact
Mitigate impact
Prepare & respond
Transfer & share
Bear

Prevent Risk
Reduce Risk
Deal with Risk
Disaster Risk Management
Tajikistan — Pasture User Unions and Communal Pasture Management
Tajikistan

Khatlon Region

Muminabad District

Semi-arid/sub-humid zones at 1000-2500 m asl, with hilly (16-30%) and steep (31-60%) slopes

Prevent Risk

Avoid new risk
Prevent impact

Reduce Risk

Mitigate impact

access to water
landslides
overgrazing
floods

land tenure
drought
low livestock productivity

land degradation
loss of vegetation cover

land erosion

overgrazing
floods

low livestock productivity

land erosion

land tenure

access to water

land degradation
loss of vegetation cover
Technologies

Rotational grazing

Communal pasture management

Water points for livestock

Underlying principles:
• Controlled grazing allows vegetation to recover
• Inclusive stakeholder engagement
• Establishing land and water ownership and user rights

Success factors:
• Low technical knowledge required
• Low cost (except water points)
• Increased livestock productivity
• Strengthened community organization
• Multiple benefits
Findings
Questions?
Towards climate and disaster resilient development
A packing list for your advocacy journey
Objective and partnership

Objectives:

1) Ease the take on advocacy through a simple guide to convince more stakeholders to work on climate advocacy

2) Contribute to climate and disaster resilience climbing higher on decision makers' and political agendas
Imagine you have a small suitcase. You travel light. What you can take with you is limited. What are the main things to pack to be well prepared for an advocacy journey?

1. CLARITY Define strategic and context-specific goals

In many cases climate change and disasters aggravate existing problems, so it is not always clear-cut to what extent the issues you are tackling are caused by them and what role other local factors play. Start with a thorough analysis of the problem you want to tackle. Ask yourself:

- Do you understand the reality on the ground and the root causes of the problem? Which role do climate change and disasters play?
- Do you know the scale and spread of the problem?
- Are you able to integrate different and diverse perspectives?

Based on the analysis, define your goal. This includes checking if the problem you selected really is the problem, i.e. the most important problem you want and can address. You also should look at where policies stand because this defines what you can influence. It might be that you need to advocate to introduce a new law or you need to push for a revision of existing laws. Start with your goal, not with what you want to do. Plan enough time to define this objective in a participatory way.

Be clear on the key players you want to influence with your advocacy campaign. Who are the key decision makers? How do you need to address them? Can you get direct access to them? What is their agenda and how much does it coincide with yours?

2. COLLABORATION Involve allies and opponents

Advocacy is a collaborative effort. Inciting change in power structures needs allies and will meet opposition. It is thus crucial to take your time to identify all potentially involved actors.

- Look at all possible allies including those who are out of the range of the usual suspects. This could be private companies e.g. insurance or renewable energies, religious communities, student groups or farmers associations affected by climate change.
- Have a close look at opponents: How strongly are they opposed to your goals? How will they react and how influential are they?
- And don’t forget neutral actors: Who is neutral and how could they be influenced to support your agenda?

Count in time to build alliances and plan your campaign with many different stakeholders. Remember to always be transparent and considerate of different cultures and priorities. Make sure there is a solid buy-in on why working together so that compromises can be reached more easily. Define clear roles and responsibilities.
The five essentials

1) CLARITY: Define strategic and context-specific goals
2) COLLABORATION: Involve allies and opponents
3) EVIDENCE: Build up credibility
4) FOCUS: Define specific action and communication
5) FLEXIBILITY: Review, reflect, learn
Questions?
inclusive Disaster Risk Reduction Hands-on Tool (i-DRR)
Background and rational

• Leave no one behind
• Many documents on the "why", few on the "how"
• Easy-to-use tool for field practitioners in DRR
How the tool works

• Downloadable mobile application

• Step-by-step practical guidance (task cards)

• Easy to navigate

• Save and share favorites
Status of development and way forward

• Beta version released on 3rd December 2019

• Download it at: www.drrplatform.org/publications

• Share your knowledge and experience and/or to become part of the testing team! manuel.rothe@cbmswiss.ch
Questions?
Indicator tool box
The tool box: content and objectives
Conceptual basis: the risk staircase
Structure

Impact level
- Climate and disaster risks reduced
- Disaster resilience strengthened
- Human welfare not compromised by natural disasters

Outcome level
- Avoid new risks
- Prevent and mitigate impact
- Prepare and respond
- Transfer and share
- Bear

Know the risks

Output level
Outcomes

<table>
<thead>
<tr>
<th>O1: Decision making is hazard and climate risk-sensitive</th>
<th>O2: Hazard-prone areas are used risk-consciously</th>
<th>O3: Human beings/settlements, (critical) infrastructures are safe</th>
<th>O4: Livelihoods are protected</th>
<th>O5: Agricultural production is climate-resilient</th>
<th>O6: People/households are economically flexible and not fully dependent from hazard and climate susceptible activities</th>
<th>O7: Natural resources are sustainably managed</th>
<th>O8: Mechanisms/strategies are in place to cope adequately with hazardous events</th>
<th>O9: Emergency response is appropriate to events</th>
<th>O10: Risk transfer or share mechanisms are functional and accessible</th>
<th>O11: The residual risk can be better borne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorities/communities/ households/private companies take risk-sensitive decision</td>
<td>Authorities/communities/ households/private companies use hazard-prone areas risk-consciously</td>
<td>Authorities/communities/ households/private companies manage to keep human beings, settlements and (critical) infrastructures safe</td>
<td>People/households are able to protect their livelihoods</td>
<td>Households/farmers have adopted climate-resilient agricultural practices</td>
<td>People/households have made themselves economically flexible and not fully dependent from hazard susceptible activities</td>
<td>People/households have adopted sustainable resource management practices</td>
<td>Communities/households/organisations/authorities dispose of mechanisms/strategies to cope adequately with hazards</td>
<td>Communities/households/XXX respond appropriately to events</td>
<td>Communities/households have access to functional transfer and share mechanisms</td>
<td>Individuals can better bear the residual risk</td>
</tr>
</tbody>
</table>

O12: Capacities of decision makers, authorities, communities, households, XXX are strengthened allowing them to adequately take action to reduce risks/adapt to climate change
Indicators

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Criteria/ Characteristic</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human beings, settlements, (critical) infrastructure are safe</td>
<td>Level of risk reduction (persons, settlements, infrastructure, critical infrastructure)</td>
<td>% of ...</td>
</tr>
<tr>
<td>Human beings, settlements, (critical) infrastructure are safe</td>
<td>% of ...</td>
<td></td>
</tr>
<tr>
<td>Human beings, settlements, (critical) infrastructure are safe</td>
<td>% of ...</td>
<td></td>
</tr>
<tr>
<td>Human beings, settlements, (critical) infrastructure are safe</td>
<td>State of application of hazard-resilient design</td>
<td>% of ...</td>
</tr>
<tr>
<td>Human beings, settlements, (critical) infrastructure are safe</td>
<td>% of ...</td>
<td></td>
</tr>
<tr>
<td>Human beings, settlements, (critical) infrastructure are safe</td>
<td>State of accessibility</td>
<td>% of ...</td>
</tr>
<tr>
<td>Human beings, settlements, (critical) infrastructure are safe</td>
<td>% of ...</td>
<td></td>
</tr>
</tbody>
</table>

Codes:

1. Description
2. Numerator
3. Denominator
4. Target value
5. Disaggregation
6. Means of verification
Indicators: maneuvering online

<table>
<thead>
<tr>
<th>Code</th>
<th>Indicator</th>
<th>Description</th>
<th>Numerator</th>
<th>Denominator</th>
<th>Target value</th>
<th>Disaggregation</th>
<th>Method and source of verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0301</td>
<td>% of new buildings and critical infrastructure constructed to withstand hazards or climate variability and maintained properly</td>
<td>Hazard-resistant design increasing the robustness of the structures and establishing warranted redundancies needed to achieve the desired performance in response to hazards. Construction has to respect the universal design principles: http://universaldesign.ie/What-is-Universal-Design/The-7-Principles/ Critical infrastructure: water systems, sanitation facilities, health facilities, schools, etc. Hazards: earthquakes, cyclones, flood, etc.; conditions may also result from climate variability like heat, humidity, wind velocity</td>
<td>Number of new buildings/critical infrastructure built hazard-resistantly</td>
<td>Total number of new buildings/critical infrastructure</td>
<td>Country/project specific</td>
<td>Optional: size of community, type of community (rural-urban)</td>
<td>expert assessment, random samples, records of acceptance of work</td>
</tr>
<tr>
<td>0302</td>
<td>% of new buildings and critical infrastructure constructed to withstand hazards or climate variability and maintained properly</td>
<td>Description: Hazard-resistant design increasing the robustness of the structures and establishing warranted redundancies needed to achieve the desired performance in response to hazards. Construction has to respect the universal design principles: http://universaldesign.ie/What-is-Universal-Design/The-7-Principles/ Critical infrastructure: water systems, sanitation facilities, health facilities, schools, etc. Hazards: earthquakes, cyclones, flood, etc.; conditions may also result from climate variability like heat, humidity, wind velocity</td>
<td>Number of new buildings/critical infrastructure built hazard-resistantly</td>
<td>Total number of new buildings/critical infrastructure</td>
<td>Country/project specific</td>
<td>Optional: size of community, type of community (rural-urban)</td>
<td>expert assessment, random samples, records of acceptance of work</td>
</tr>
<tr>
<td>0303</td>
<td>% of new buildings and critical infrastructure constructed to withstand hazards or climate variability and maintained properly</td>
<td>Description: Hazard-resistant design increasing the robustness of the structures and establishing warranted redundancies needed to achieve the desired performance in response to hazards. Construction has to respect the universal design principles: http://universaldesign.ie/What-is-Universal-Design/The-7-Principles/ Critical infrastructure: water systems, sanitation facilities, health facilities, schools, etc. Hazards: earthquakes, cyclones, flood, etc.; conditions may also result from climate variability like heat, humidity, wind velocity</td>
<td>Number of new buildings/critical infrastructure built hazard-resistantly</td>
<td>Total number of new buildings/critical infrastructure</td>
<td>Country/project specific</td>
<td>Optional: size of community, type of community (rural-urban)</td>
<td>expert assessment, random samples, records of acceptance of work</td>
</tr>
<tr>
<td>0304</td>
<td>% of new buildings and critical infrastructure constructed to withstand hazards or climate variability and maintained properly</td>
<td>Description: Hazard-resistant design increasing the robustness of the structures and establishing warranted redundancies needed to achieve the desired performance in response to hazards. Construction has to respect the universal design principles: http://universaldesign.ie/What-is-Universal-Design/The-7-Principles/ Critical infrastructure: water systems, sanitation facilities, health facilities, schools, etc. Hazards: earthquakes, cyclones, flood, etc.; conditions may also result from climate variability like heat, humidity, wind velocity</td>
<td>Number of new buildings/critical infrastructure built hazard-resistantly</td>
<td>Total number of new buildings/critical infrastructure</td>
<td>Country/project specific</td>
<td>Optional: size of community, type of community (rural-urban)</td>
<td>expert assessment, random samples, records of acceptance of work</td>
</tr>
<tr>
<td>0305</td>
<td>% of new buildings and critical infrastructure constructed to withstand hazards or climate variability and maintained properly</td>
<td>Description: Hazard-resistant design increasing the robustness of the structures and establishing warranted redundancies needed to achieve the desired performance in response to hazards. Construction has to respect the universal design principles: http://universaldesign.ie/What-is-Universal-Design/The-7-Principles/ Critical infrastructure: water systems, sanitation facilities, health facilities, schools, etc. Hazards: earthquakes, cyclones, flood, etc.; conditions may also result from climate variability like heat, humidity, wind velocity</td>
<td>Number of new buildings/critical infrastructure built hazard-resistantly</td>
<td>Total number of new buildings/critical infrastructure</td>
<td>Country/project specific</td>
<td>Optional: size of community, type of community (rural-urban)</td>
<td>expert assessment, random samples, records of acceptance of work</td>
</tr>
<tr>
<td>0306</td>
<td>% of new buildings and critical infrastructure constructed to withstand hazards or climate variability and maintained properly</td>
<td>Description: Hazard-resistant design increasing the robustness of the structures and establishing warranted redundancies needed to achieve the desired performance in response to hazards. Construction has to respect the universal design principles: http://universaldesign.ie/What-is-Universal-Design/The-7-Principles/ Critical infrastructure: water systems, sanitation facilities, health facilities, schools, etc. Hazards: earthquakes, cyclones, flood, etc.; conditions may also result from climate variability like heat, humidity, wind velocity</td>
<td>Number of new buildings/critical infrastructure built hazard-resistantly</td>
<td>Total number of new buildings/critical infrastructure</td>
<td>Country/project specific</td>
<td>Optional: size of community, type of community (rural-urban)</td>
<td>expert assessment, random samples, records of acceptance of work</td>
</tr>
</tbody>
</table>
Standard Indicators

Indicator 0307 % of structural protective measures maintained properly by the community

Description
The indicator measures if and to what extent the structural protective measure established with the support of the project is maintained. Maintained means periodically (at least once per season) controlled and showing no signs of avoidable deterioration.

Usually, in community-based projects, the community is in charge of maintaining the measures. If the entry point is the authority and not the community, then the maintenance lies with the authority.

Means of Verification
Survey, observation, expert assessment

Data to be collected
1. Specify against which hazard the measure is protective
2. Specify the type of structural measure: grey – green – hybrid infrastructure
3. Indicate the year of establishment of the measure.
4. Estimate the assets at risk by ticking the category:
 - Human lives
 - Houses, permanent settlements
 - Livestock, agricultural produce, productive land etc.
 - Community buildings (schools, markets, community halls etc.)
 - Water systems (water for drinking, household, irrigation, waste water)
 - Roads, rail lines etc.
 - Energy supply (gas, petrol, electricity)
5. Assess the level of maintenance by asking following questions:
 - Q1. How many times has the measure been checked in the last 12 months?
 A1. 0 – 1 = 2
 - Q2. Did the measure show any sign of avoidable deterioration?
 A2. Yes – no. If A2 is yes, try to specify/describe
 - Q3. Did a hazardous event(s) happen in the past 12 months?
 A3. Yes – no. If A3 is yes, continue
 - Q4. Did the measure prove to be effective in protecting people and their assets?
 A4. yes – no. If A4 is no, try to describe/document the damage (to the asset/ to the structural measure)
 - Q5. How effective is the measure for a certain scenario (specify small/massive – extraordinary event)?
 Depends on the design event of the measure, material, construction
 A5. very good – good – regular – bad – very bad
 - Q6. How would you rate the quality of care and maintenance given by the responsible stakeholders?
 A6. very good – good – regular – bad – very bad

Calculation of indicator
Numerator: Number of structural measures established with support of the project and managed properly

Denominator: Total number of structural measures established with support of the project.

Either assess all structural measures (with support of the project) or a statistically representative sample and extrapolate.

Designation
Optimal size of community, type of community (rural/urban)

Comment
Rationale, expert assessment

Reference
SRC questionnaire and analysis
Status of development

Finalisation:

- Indicators (95%)
- Data collection and analysis package for standard indicators (90%)
Questions?
Evaluation of existing cost-benefit analysis tools
Debris Flow event Chosica, Peru
Do protective measures justify themselves?
CBA – Risk and Cost-Benefit concept

How to measure benefit (effect) of measure?

Benefit = Difference between Potential damage/a (with/without measure)

\[\text{Benefit} = \text{Risk} \]

Benefit = Risk with measure - Risk without measure [$/year]

\[\text{Risk} = \frac{\text{Hazard} \times \text{Vulnerability}}{\text{Capacity}} \]

\[\text{Cost - Benefit} = \frac{\text{Risk reduction}}{\text{Costs}} \]
CBA – Risk and Cost-Benefit concept

\[
Risk = \frac{Hazard \times Vulnerability}{Capacity}
\]

Mitigation measures intend to influence the risk params to reach benefit
- Simplified approach, easy to apply
- Easily comprehensible
- Handbook available in Spanish and English
- Free of charge

- No indirect risks considered
- Low transparency
- Low potential for advocacy
- Low precision due to simplification
- No calculation tool available
- Easy handling
- Free of charge
- English and Spanish
- All params can be modified
- Indirect and direct risks
- Transparency of work steps and results
- Not based on maps
- Advocacy
CBA

SDC Resilience Toolbox

- Easy handling
- English and Spanish
- All params can be modified
- Indirect and direct risks
- GIS-compatible
- Advocacy
- Transparency of work steps and results
- Linkage between authority-community

- Licence costs
- Requires hosting
- Dependency to provider
- Handbook available in Sp and Eng
- Includes economic and social benefits and costs
- Participative approach
- High acceptance within community

- Low transparency
- Low potential for advocacy for financial authorities
- Low precision due to simplification
- Effect not quantifiable
CBA – Overview of existing tools

Natural Hazard Risks and Cost-Benefit of Mitigation Measures

Decision Tree for Assessment Tool selection

- I prefer a **quantitative** to a qualitative assessment
 - yes
 - no → **IFRC-Tool**

- I need a **sound assessment** as the basis for final decision of intervention
 - yes
 - no → **Caritas-Tool**

- I have the necessary time and skills **for a participative** definition of the risk parameters
 - yes
 - no
 - no → **No sound assessment possible**
 - yes → **SRC-Tool**

- I prefer a **cartographic representation** of the inputs and results for traceability and I have the **resources for a tool customizing**
 - yes
 - no → **SDC-Tool Miresiliencia**

Required data
- Hazard map (HM)
- Intensity maps (IM)
Questions?
E-learning course
Outlook
Platform Events
Upcoming events

Effective Advocacy for DRR and CCA
➢ Webinar, 21.01.2020

GMO in Agriculture – Risks and Risk Reduction measures
➢ Learning event, 13.1.2020

Nexus humanitarian Aid – Development
➢ Workshop, autumn 2020

Further events and information
• DRR and CCA Basics [webinar]
• Working at scale through alliances [learning event]
• Urban DRR/CCA [webinar]
• Nexus Humanitarian aid -Development [webinar]

https://drrplatform.org/event-list.html
We value your feedback

• The webinar slides will be made available on our website www.drrplatform.org

• Thank you for filling out our feedback form (text box / mail after webinar)

https://forms.gle/ihEJQrnGAQx1DXDd9
This webinar has been developed for the **Swiss NGO DRR Platform** by: HELVETAS Swiss Intercooperation, Caritas Switzerland, Swiss Red Cross, Christoffel Blindenmission, with contribution from SDC
Visit us online: https://drrplatform.org/event-list.html